Long acting injectable cabotegravir is safe and effective in preventing HIV infection in cisgender women: results from HPTN 084

Sinead Delany-Moretlwe, MBBCh PhD
on behalf of the HPTN 084 study team
Authors

on behalf of the HPTN 084 study team
Disclosures

- I have served on MSD advisory boards
- I have received drug donations for research from Gilead Sciences
Background

- Antiretroviral-based pre-exposure prophylaxis can reduce HIV acquisition

- Women are disproportionately affected by HIV, esp. in sub-Saharan Africa where women experience individual and social barriers to consistent daily oral PrEP use

- Novel long-acting products e.g., CAB LA administered less frequently may simplify PrEP use and provide much needed HIV protection

Primary Objectives

• To evaluate the relative efficacy of oral CAB/CAB LA vs. daily oral TDF/FTC for HIV prevention.

• To evaluate the relative safety of oral CAB/CAB LA vs. daily oral TDF/FTC for HIV prevention.
Study population

- Planned enrolment n=3200 at 20 sites
- Cisgender women aged 18-45 years
- HIV negative
- Sexually active
- Modified VOICE Risk Score $\geq 3^*$
 - Age, partner characteristics, alcohol use
 - Increased to ≥ 5
- No contraindications to either agent
 - No hepatic or renal insufficiency, seizures, allergy
- Not pregnant or breastfeeding
- Use reliable form of modern contraception
 - From May 2018, only LARC with <1% failure rate
HIV, pregnancy testing and safety assessments at each product administration visit; additional post injection safety visits
Real-world adherence counselling support aligned with national guidelines
Statistical analysis

• Endpoint-driven trial (n=114)
 – Background HIV incidence in absence of PrEP 3.5% pa
 – CAB adherence 80-85%, TDF/FTC adherence 45-50%, LTFU 5% pa
 – 90% power, $\alpha = 0.05$ to detect RR 0.48-0.54

• Superiority analysis
 – HIV incidence during steps 1 and 2
 – Intent to treat, Cox proportional hazards model, stratified by site

• Interim reviews at 22%, 39%, 59%, 78% of information planned
 – Early stopping using an O’Brien-Fleming boundary for efficacy
 – Pre-specified stopping boundary crossed during planned interim review Nov 5, 2020
Screening, enrolment and follow-up

- **4,882 Screened**
- **3,224 Randomised**
- **1,658 excluded**

- **Allocated to CAB LA n=1,614**
 - Follow-up
 - M6 1358/1441 (94.2%)
 - M12 901/999 (90.2%)
 - M18 321/377 (85.1%)
 - M24 71/84 (84.5%)
 - Analysed n=1,614
 - 1,953 person-years

- **Allocated to TDF/FTC n=1,610**
 - Follow-up
 - M6 1346/1442 (93.3%)
 - M12 905/1002 (90.3%)
 - M18 332/378 (87.8%)
 - M24 77/88 (87.5%)
 - Analysed n=1,610
 - 1,939 person-years

20 no post randomisation HIV results
22 no post randomisation HIV results
<table>
<thead>
<tr>
<th></th>
<th>Total (n=3224)</th>
<th>CAB (n=1614)</th>
<th>TDF/FTC (n=1610)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age (years)</td>
<td>25 (22, 30)</td>
<td>25 (22, 30)</td>
<td>25 (22, 20)</td>
</tr>
<tr>
<td>≤ 25 years</td>
<td>57%</td>
<td>57%</td>
<td>57%</td>
</tr>
<tr>
<td>Not living with partner</td>
<td>82%</td>
<td>82%</td>
<td>82%</td>
</tr>
<tr>
<td>In the past month</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partner HIV positive or unknown*</td>
<td>34%</td>
<td>34%</td>
<td>35%</td>
</tr>
<tr>
<td>≥ 2 sex partners*</td>
<td>54%</td>
<td>54%</td>
<td>55%</td>
</tr>
<tr>
<td>Transactional sex*</td>
<td>41%</td>
<td>41%</td>
<td>41%</td>
</tr>
<tr>
<td>Anal sex*</td>
<td>6%</td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>Median VOICE risk score (IQR)</td>
<td>6 (5,7)</td>
<td>6 (5,7)</td>
<td>6 (5,7)</td>
</tr>
<tr>
<td>C. trachomatis</td>
<td>17%</td>
<td>17%</td>
<td>17%</td>
</tr>
<tr>
<td>N. gonorrhoeae</td>
<td>7%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>BMI ≥ 25</td>
<td>55%</td>
<td>55%</td>
<td>56%</td>
</tr>
</tbody>
</table>

*Responses for 3210 participants, CAB n=1610 and TDF/FTC N=1600
Primary outcome: HIV incidence

40 infections over 3892 person-years
Pooled HIV incidence 1.03 (0.73, 1.4) per 100 person-years

<table>
<thead>
<tr>
<th></th>
<th>CAB</th>
<th>TDF/FTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV infections</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>Person-years</td>
<td>1,953</td>
<td>1,939</td>
</tr>
<tr>
<td>HIV incidence (95% CI)</td>
<td>0.2 (0.06, 0.52)</td>
<td>1.86 (1.3, 2.57)</td>
</tr>
</tbody>
</table>

Wald test z statistic – 4.20, efficacy stopping bound (z scale) – 3.61
Women in the CAB group had an **89% lower risk of HIV infection**, compared to TDF/FTC group.

Cumulative HIV incidence – ITT

HR: 0.11 (0.01, 0.31)
P = 0.00027
Overall, 62% detectable TFV and 46% >40ng/ml
Injection coverage, 6-month intervals - all

Injection coverage: injections administered as a proportion of total expected injection visits
Cabotegravir - 4 incident HIV Infections
Cabotegravir - 4 incident HIV Infections

Infection in the absence of recent CAB exposure

Step 1: Oral CAB lead-in
Step 2: CAB LA 600 mg IM
Step 2: CAB LA injection > 2 week overdue
Step 3: Open-label TDF/FTC
Step 3: Overdue TDF/FTC dispensation
Annual follow-up

Percent adherence to oral lead-in
CAB LA 600 mg IM
Open-label TDF/FTC dispensed
First site positive HIV test
Cabotegravir - 4 incident HIV Infections
TDF/FTC - 36 Incident HIV Infections

Step 1: Oral TDF/FTC lead-in
Step 2: Blinded TDF/FTC
Step 2: Blinded TDF/FTC overdue
Blinded TDF/FTC dispensed
First site test positive for HIV
Additional testing among seroconverters, in progress

- **HIV**
 - Timing of first infection

- **Drug concentrations**
 - CAB all visits
 - TDF/FTC selected visits peri-infection

- **Resistance profiles**
 - HIV infection at time of first detection
Safety: Injection site reactions (ISR)

Any ISR, by injection number and arm

- 21% participants any ISR
 - 32% CAB vs. 9% TDF/FTC
- 4% participants Grade 2+ ISR
 - 7% CAB vs. 1% TDF/FTC
- Zero discontinuations d/t ISR
Safety: Grade 2+ adverse events - reported in ≥ 5%

<table>
<thead>
<tr>
<th>Participants with ≥ Grade 2 events</th>
<th>Total (n=3224)</th>
<th>CAB (n=1614)</th>
<th>TDF/FTC (n=1610)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Any Grade 2+ events</td>
<td>2956</td>
<td>92%</td>
<td>1477</td>
</tr>
<tr>
<td>Creatinine clearance decreased</td>
<td>2359</td>
<td>73%</td>
<td>1166</td>
</tr>
<tr>
<td>Creatinine increased</td>
<td>664</td>
<td>21%</td>
<td>337</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>650</td>
<td>20%</td>
<td>309</td>
</tr>
<tr>
<td>Chlamydia infection</td>
<td>528</td>
<td>16%</td>
<td>253</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>509</td>
<td>16%</td>
<td>236</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>409</td>
<td>13%</td>
<td>210</td>
</tr>
<tr>
<td>Amylase increased</td>
<td>320</td>
<td>10%</td>
<td>172</td>
</tr>
<tr>
<td>Blood glucose decreased</td>
<td>292</td>
<td>9%</td>
<td>146</td>
</tr>
<tr>
<td>Vulvovaginal candidiasis</td>
<td>267</td>
<td>8%</td>
<td>145</td>
</tr>
<tr>
<td>Trichomoniasis</td>
<td>230</td>
<td>7%</td>
<td>123</td>
</tr>
<tr>
<td>Back pain</td>
<td>188</td>
<td>6%</td>
<td>89</td>
</tr>
<tr>
<td>Abnormal loss of weight</td>
<td>177</td>
<td>5%</td>
<td>76</td>
</tr>
<tr>
<td>Menorrhagia</td>
<td>166</td>
<td>5%</td>
<td>81</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>159</td>
<td>5%</td>
<td>86</td>
</tr>
<tr>
<td>Metrorrhagia</td>
<td>155</td>
<td>5%</td>
<td>79</td>
</tr>
<tr>
<td>Any SAE/EAE</td>
<td>73</td>
<td>2%</td>
<td>32</td>
</tr>
<tr>
<td>Deaths</td>
<td>3</td>
<td>0,1%</td>
<td>3</td>
</tr>
</tbody>
</table>
CT/GC incidence - ITT (n=3,224)

- Chlamydia
 - CAB (n=1614): 18.4
 - TDF/FTC (n=1610): 20.5

- Gonorrhoea
 - CAB (n=1614): 7.2
 - TDF/FTC (n=1610): 8
Changes in weight, kg – ITT (n=3,224)

- Initial immediate increase in weight on CAB: +0.42 kg CAB, (95% CI 0.30, 0.54), p <0.001
- Overall, increase in weight in both arms:
 - CAB +2.4 (95% CI 2.1, 2.7) kg/year
 - TDF/FTC +2.2 (95% CI 2.0, 2.4) kg/year
 - p=0.12
Pregnancy incidence and outcomes - ITT

<table>
<thead>
<tr>
<th></th>
<th>Total n=3224</th>
<th>CAB n=1614</th>
<th>TDF/FTC n=1610</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. confirmed pregnancies</td>
<td>50</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>Person-years</td>
<td>3829.7</td>
<td>1914.5</td>
<td>1915.2</td>
</tr>
<tr>
<td>Incidence rate (95% CI)</td>
<td>1.3 (1.0, 1.7)</td>
<td>1.5 (1.0, 2.2)</td>
<td>1.1 (0.7, 1.7)</td>
</tr>
</tbody>
</table>
Pregnancy outcomes - ITT

<table>
<thead>
<tr>
<th></th>
<th>Total n=50</th>
<th>CAB n=29</th>
<th>TDF/FTC n=21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td>23</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Known pregnancy outcomes n=27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live births</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Pregnancy loss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>=37 weeks</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20-36 weeks</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td><20 weeks*</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Ectopic</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Congenital anomalies n=27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>23</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Unknown</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

*includes elective terminations
Conclusions

• Both agents highly effective in preventing HIV
 – Pooled incidence 1.03 (0.73, 1.4) per 100 py

• CAB was superior to daily oral TDF/FTC in preventing HIV in cisgender women
 – 89% lower risk of HIV infection in participants receiving CAB compared to TDF/FTC
 – CAB LA 8-weekly likely provided an adherence advantage over daily oral TDF/FTC
 – Ongoing testing to fully understand reasons for breakthrough infections

• Both products were safe and well tolerated with few differences in Grade 2+ adverse events by arm, apart from ISR
 – ISR were generally mild, associated with pain, and generally occurred at 1st injection
 – No discontinuations due to ISR

• Results complement data from HPTN 083, and confirm CAB as first safe and effective injectable PrEP agent for cisgender women
Acknowledgements

Our participants, their communities, the community advisory boards, the community partners and stakeholders at each of the sites

Site Name, IoR:

- Baylor-Uganda CRS, Patricia Nahirya Ntege
- Blantyre CRS, Noel Kayange
- Botha’s Hill CRS, Mammekwa Mokgoro, Elizabeth Spooner
- Desmond Tutu TB Centre - Stellenbosch Univ. (DTTC-SU) CRS, Peter Bock
- Emavundleni CRS, Gonasagrie Nair
- Eswatini Prevention Center CRS, Harriett Niwagaba-Biribonwoha
- Gaborone CRS, Joseph Makhema
- Isipingo CRS, Dishiki Kalonji
- Kisumu CRS, Samuel Gurrion
- Malawi CRS, Mina Hosseinipour
- Milton Park CRS, Pamela Mukwekwerere
- MU-JHU Research Collaboration CRS, Clemensia Nakabiito
- Seke South CRS, Portia Hunidzarira
- Spilhaus CRS, Bekezela Siziba
- Soweto HPTN CRS, Ravindre Panchia
- St Mary’s CRS, Patricia Mandima
- UVRI-IAVI CRS, Juliet Mpendo
- Verulam CRS, Nishanta Singh
- Wits RHI Ward 21 CRS, Carrie Mathew
- Zengeza CRS, Nyaradzo Mgodi
HPTN Leadership & Operations (LOC)

Study Team
- Jennifer Farrior
- Scott Rose
- Jill Stanton
- Leah Schrumpf
- Barbara Long
- Nirupama Sista

Community Team
- Rhonda White
- Marcus Bryan
- Jonathan Lucas
- Abraham Johnson
- Nikkiia Morrison

Communications Team
- Kevin Bokoch
- Laura Long
- Eric Miller

Finance Team
- Kathy Hinson
- Sarah Stone

HPTN Lab Center (LC)
- Estelle Piwowar-Manning
- Yaw Agyei
- Paul Richardson
- Mark Marzinke
- Sue Eshleman
- Pete Anderson

HPTN Statistical & Data Management Center (SDMC)

- Stephanie Biegel-Orme
- Jim Hughes
- Priyanka Agarwal
- Lynda Emel
- Gordon Chau
- Amber Guo

HPTN Leadership

- Myron Cohen
- Wafaa El-Sadr
- Deborah Donnell
- Sue Eshleman
- Nirupama Sista
- Kathy Hinson

Additional Protocol Team Members

- Kimberly Smith
- Alex Rinehart
- Lut Van Damme
- Craig Hendrix
- Sybil Hosek
- Betsy Tolley
- Anna Lawton
- Jim Rooney
- Adeola Adeyeye
- Mike Cohen
- Kimberly Scarsi
- Ribka Berhanu
- Katherine Shin

Our Community Working Group and CAB Members

CWG Protocol Representatives
- Elizabeth Magada
- Cissy Ssuuna

- Pumeza Mzizi
- Amanda Zindela
- Mathias Wambuzi
- Pamela Tshandu
- Godfrey Mbulelo Tabata
- Tereza Omoro
- Erick Okima
- Vanessa Ntlombeni
- Mluleki Nompondwana
- Cynthia Nombeko Mpongo
- Sibusiso Nhleko
- Mduduzi Ngubane
- Siyabonga Ngqame
- Beauty Nerupfunde
- Gertrude Nanyonjo
- Daisy Namakula
- Teopista Nakyanzi
- Tarisal Murefu
- Nonkululeko Mtshali
- Tuelo Sylvia Mphele
- Ernest Mosimanegape Moseki
- Clifford Gowensa
- Daniel Gondwe
- Gwynneth Hendricks
- Joanita Kawalya Muganga
- Doreen Kemigisha
- Edith Kibiribiri

CWG Protocol Representatives
- Macklean Mary Kyomya
- Jennie Makunganya
- Loreen Mangove
- Jabulile Mantantana
- Pearson Mmodzi
- Neetha Morar
- Livona Chitibura
- Nelcay Chome
- Wandile Dube
- Lindelwa Dyabeni

HPTN 083 team
- Raphael Landovitz
- Beatriz Grinsztejn
- Marybeth McCauley
- Ryan Kofron

HIV alias team members
- Francesca Conradie
- Michelle Moorhouse
Acknowledgements

Sponsor
• U.S. National Institute of Allergy and Infectious Diseases (NIAID), all components of the U.S. National Institutes of Health (NIH)

DAIDS
• Adeola Adeyeye
• Carl Dieffenbach
• Sheryl Zwerski
• David Burns
• Melissa Kin
• Katie Shin
• Eileen Pouliot
• Nancy Cogliano
• Linda Ehler
• Usha Sharma

Pharmaceutical Support
• ViiV Healthcare
• Gilead Sciences, Inc.

Additional Funding support
• ViiV Healthcare
• Bill & Melinda Gates Foundation
• National Institute of Mental Health (NIMH),

Overall support for the HIV Prevention Trials Network (HPTN) is provided by the National Institute of Allergy and Infectious Diseases (NIAID), Office of the Director (OD), National Institutes of Health (NIH), National Institute on Drug Abuse (NIDA), and the National Institute of Mental Health (NIMH) under Award Numbers UM1AI068619-15 (HPTN Leadership and Operations Center), UM1AI068617-15 (HPTN Statistical and Data Management Center), and UM1AI068613-15 (HPTN Laboratory Center).

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.